Couple of new publications that have gone online during this summer: a preprint on Volterra-series approach to the Van der Pol oscillator driven by white noise, and a presentation on higher-order memory and inertia effects in the Onsager-Machlup fluctuation theory.

Volterra-series approach to stochastic nonlinear dynamics: linear response of the Van der Pol oscillator driven by white noise
– R. Belousov, F. Berger, A.J. Hudspeth
http://arxiv.org/abs/1908.05313
The Van der Pol equation is a paradigmatic model of relaxation oscillations.
This remarkable nonlinear phenomenon of self-sustained oscillatory motion
underlies important rhythmic processes in nature and electrical engineering.
Relaxation oscillations in a real system are usually coupled to environmental
noise, which further complicates their dynamics. Determination of the equation
parameter values becomes then a difficult task. In a companion paper we have
proposed an analytical approach to a similar problem for another classical
nonlinear model—the bistable Duffing oscillator. Here we extend our techniques
to the case of the Van der Pol equation driven by white noise. We analyze the
statistics of solutions and propose a method to estimate parameter values from
the oscillator’s time series.
Higher-order memory and inertia effects in Onsager-Machlup theory of stochastic fluctuations
– R. Belousov, E. Roldan
Available at
▸ More