Roman Belousov, PhD
Postdoctoral Fellow
▸ Summer 2019
Cover image

Couple of new publications that have gone online during this summer: a preprint on Volterra-series approach to the Van der Pol oscillator driven by white noise, and a presentation on higher-order memory and inertia effects in the Onsager-Machlup fluctuation theory.

Cover image

Volterra-series approach to stochastic nonlinear dynamics: linear response of the Van der Pol oscillator driven by white noise

– R. Belousov, F. Berger, A.J. Hudspeth

The Van der Pol equation is a paradigmatic model of relaxation oscillations. This remarkable nonlinear phenomenon of self-sustained oscillatory motion underlies important rhythmic processes in nature and electrical engineering. Relaxation oscillations in a real system are usually coupled to environmental noise, which further complicates their dynamics. Determination of the equation parameter values becomes then a difficult task. In a companion paper we have proposed an analytical approach to a similar problem for another classical nonlinear model—the bistable Duffing oscillator. Here we extend our techniques to the case of the Van der Pol equation driven by white noise. We analyze the statistics of solutions and propose a method to estimate parameter values from the oscillator’s time series.

Higher-order memory and inertia effects in Onsager-Machlup theory of stochastic fluctuations

– R. Belousov, E. Roldan

Available at

▸ More
▸ New paper is out
White noise in reaction-diffusion models of morphogenesis

Fluctuation theory in space and time: White noise in reaction-diffusion models of morphogenesis

Phys. Rev. E 98 (2019)

Whereas nonequilibrium processes create biochemical signals that encode the developmental plan of an organism, physical fluctuations act to erase this information. The present work uses statistical physics to predict the fluctuation magnitude.

▸ More